e EOTEVER DA,

- ‘r‘v~vﬁ4 _-_

== : = yz

L, = e

lles
2 His e

MICROCOPY RESOLUTION TES' 0 sidp

o R0637.,7-£C
OIC FiLE Cupy -

Formal Models of Hardware S —

and Their Application to VLSI Design Automation
Final Report

Alice C. Parker

AD-A178 837

December, 1986
U.S. Army Research Office
Contract No. DAAG29-83-k-0147

Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, CA 90089-0781 L

Approved for Public Release;

Distribution Unlimited. %
)

The view, opinions, and/or findings contained in this report are those of the author(s)

and should not be construed as an official department of the army position, policy, or

decision, unless so designated by other documentation.

1

Unclassified
SETURITY CLASSIF!CATION OF THIS PAGE A D - A ! q Q ? 3 r’
REPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS

F s REPORT SECURITY CLASSIFICATION

lnclaccifigd
2s. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVA(LABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

5. MONITORING ORGANIZATION AEPORT NUMBER(S)

ARo 20632./7-€C

& PERFORMING QAGANIZATION REPORT NUMBER(S)

6s. NAME OF PERFQRMING ORGANIZATION b. QFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
U 111 applicabdle)
niversitv of Souther : .
pniversity of Southern 0€fice of taval Tesearch
6c. AODORESS (City, State and ZIP Code) 5. AODRESS (City. State and ZIP Coae!
Decartrent of Engineering n
Engineering-Svsters, S/L-300 1730 East “reen Street
<n TR lT fmrn AnAC_ATA ®3asadera, California 21108-7475
Los “ngeles, California €003C-0731 G~ v v s
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT 'DENTIEICATION NUMBER
J ORGANIZATION (11 appiicadle)
Us Prmy lesearca Cffice Lrrref-33-K-0147
, 8c. ADDRESS (City. State and ZIP Code) 10 SQUAGE OF FUNDING NOS
LS frmyv Cesearch Gffice PROGAAM PROJECT | TasK WORK UNIT
,"(\ RoX 12211 ELEMENT NO. NO. l . .
nesearch Trianale Park, NC 2770° i !
11 TITLE Inciuae Securtty Classification:
4 reercy seepp e CF BAODUACE ARG TEEIS AnrlqorTior Ino el DESTGN S geeprycr (Loclassifiag
4 12. PERSONAL AUTHORIS)
] ' flice C. Tarker
134 TYPE QF REPOAT 136, TIME COVE‘\RED 14. DATE OF AEPOAT (Yr Mo.. Day/ 15. PAGE COUNT
Fina] FROM 09 30 O 09/\:6 86/1;/;4 79
’ 16. SUPPLEMENTARY NQTATION . . .)
4 ‘ he view, opinicns, and/or findings contained in this rercrt are these cof the author{s) ard

shiuld not te construed as an qfficia] Derartrent of the /lrmy nosition, rolicy, cr decisicr.
- ~ o ~ gc‘.men&g};q'--\ = b

17. COSAT! CODES i 18. SUBJECT TEAMS (Continue on reverse i/ necessary and identi/y by dlock number)
».c\l ‘_h . . . VEada N e . . o3
FIELD GAQUP SUB. GA. Swnthesis, nihrelining, clocking hardare oné1ﬁ1zab1on area
—— gstiratioR, “ring, interconnett, b Ravidr, data structure,
T c¢esicn auteratior, cornuter aided desion. . -

19. ABSTRACT Continue on reverse if necessary and identify by diock number)

This final rerort descrites research in Yich-level svnthesis, and an asscciated nretler,
area estimaticn of "ategrated circuits. The arrroach taker is to create formal rodels ¢f
the probler beina sclved. Four rajer research results havae bteen ~roduced. First, an
accurate techrioue for estiration of intecrated circuit lavout area frer cell in‘armation
has teen develered. Second, ortiral clocking schere svnthesis has teen autecratec.
' Third, nr~arams to cesign rnipelined and rnen-nirelined data raths have beer develcrned,
Fourth, register aljccation o€ the data naths has alsc been autorated. In addition,
a representation fcr design information vhich ''as nrocuced under a nrevious ccntract has
' been used “or a nurmber of anrlications. . '

This research forms nart of the /DA Pdvanced Cesian AutoMation Syster under construction

at the University of Southern _

slifornia. . . .

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED (O same as rer. T oricusers O Urclassified

22a. NAME OF RESPONSIBLE INDIVIDVAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
{Include Aree Code)

' DD FORM 1473, 83 APR €DITION OR 1 JAN 73 IS OSSOLETE. Lnclassified

SECURITY CLASSIFICATION QF THIS PAGE

~v

Formal Models of Hardware

and Their Application to VLSI Design Automation

Final Report

Alice C. Parker

December, 1988

U.S. Army Research Office

Contract No. DAAG29-83-k-0147

- Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, CA 90089-0781

Approved for Public Release;

Distribution Unlimited.

The view, opinions, and/or findings contained in this report are those of the author(s)
and should not be construed as an official department of the army position. policy. or

decision, unless so designated by other documentation.

S\

Table of Contents
. ABSTRACT
INTRODUCTION
. SUMMARY OF RESEARCH RESULTS
3.1. Area Estimation
) 3.2. Synthesis
' 3.3. Application of Design Representations
' 4. PERSONNEL SUPPORTED
References
' I. A Guide to CSSP
II. Sehwa User’s Manual
[1I. MAHA User’s Manual
IV. PLEST: An Area Estimator for Polycell Chips

W
OO0 U DN~

S —

i
¥

P 2 i i P V. PR — et PR

-y T

1. ABSTRACT

This final report describes research in high-level synthesis, and an associated problem,
area estimation of integrated circuits. The approach taken is to create formal models of
the problems being solved. Four major research results have been produced. First, an
accurate technique for estimation of integrated circuit layout area from cell information
has been developed. Second, optimal clocking scheme synthesis has been automated.
Third, programs to design pipelined and non-pipelined data paths have been deveioped.
Fourth, register allocation of the data paths has also been automated. In addition, a
representation for design information which was produced under a previous contract has

been used for a number of applications.

This research forms part of the ADAM Advanced Design AutoMation system under

construction at the University of Southern California.

2. INTRODUCTION

The focus of the research described in this final report has been on synthesizing
hardware automatically from specifications of the required behavior. In order to
perform this synthesis task properly, estimates of the silicon chip area required must be
available. In addition, design data must be represented in a manner that can be
manipulated easily by the synthesis programs. The specific probiems studied under this

contract include

1. techniques to perform area estimation from high level specifications,

2. methods to generate hardware automatically from behavioral specifications,
while meeting timing and cost constraints, and,

3. applying models for representing hardware to support synthesis and
verification.

The approaches to each of these problems, and results obtained, will now be described.
A list of publications and supported personnel follows the research summary. Finally,
program documentation for the synthesis and area estimation programs is contained in

the appendices.

._._Jm‘...d_;‘._.“‘ Py V- datib. — i, y - e

-y

—?—-—v“'v-v -—

(8]

This research forms part of the ADAM Advanced Design AutoMation system under

construction at the University of Southern California.

3. SUMMARY OF RESEARCH RESULTS

This section summarizes research in area estimation, synthesis, and application of

hardware representations.

3.1. Area Estimation

The area estimation research has three components:

o statistical estimations of the channel capacities of gate array layouts,
e estimating the area of standard cell layouts, and

e estimating the area and performance of pipelined data paths from the
behavior.

Gate-Array Area Estimation

The gate array wiring space estimation results allow us to estimate individual channel
capacities on a gate array chip. These estimates can then be used to choose actual
channel widths, and the probability of successfully routing these chips (routability) can
also be estimated. Also in [19] we provide mathematical models to obtain quantitative
measures for assessing the quality of the placement and routing solutions and estimating

these measures a priort.

A gate array chip is modeled as a two dimensional lattice of points with the number of
wires emerging from a point being a random variable following the Poisson distribution.
Wires at the intersection of a horizontal and vertical channel are classified as belonging
to one of six different types. The dimensions of the routing channel are defined as

functions of these random variables.

We present probabilistic models of routing on master slice ICs for estimating three
important measures of placement, namely, average wire lengths, wiring area, and
routability. In specific, we present simple and computationally efficient methods for

obtaining estimates of the dimensions of the individual routing channels. Additionally,

asymptotic properties of these estimates are discused.

Next, the relationship between wire length distributions and partitioning is addressed.
In particular we show that the empirical rule known as Rent’s rule that characterizes
"well" partitioned layouts corresponds to a family of wire length distributions known as
the Weibul family. In fact any such relation, i.e. between the number of pins available
on a module and the number of circuits that can be placed on the module, completely

determines the distribution of wire lengths.

Finally, the question of routability is addressed. That is given a placement and the
amount of wiring space, we ask what percentage of connections can be successfully
completed at a given level of confidence. Since the dimensions of the routing channels
are random variables, routability is defined in terms of the distribution of these random
variables. Exact formulas for computing the routability of each channel are presented.
Additionally, asymptotic formulas (ie. as the chip size becomes large) for routability are
derived. Finally, computational results using the exact and asymtotic formulas for
chips of various sizes are presented. Some of these results have been published in [20],
(18].

Standard-Cell Area Estimation

Work has been completed ou area estimation of standard cell IC’s [6], [5]. The main
focus is on establishing measures of net congestion in the intervening routing channels
between rolls of standard cells. A simple empirical model was developed for that
purpose. The model assumes the existence of relations between rows of standard cells as
partitions and the number of nets which connect them to other rows or pads. The
relations are similar in concept to Rent’s rule. Experiments were done with the aim of
investigation the existence of such relations in actual laycuts. Some empirical evidence
that such relations exist was found. Another problem researched is statistical modelling
of row sizes with the aim of estimating the size of the widest row, which, in turn
determines the width of a standard cell block. The method of row folding for
placement of standard cells is used to model the variation in total routing track demand

as the number of rows is increased and the aspect ratio is changed.

po— |

PLEST, a program for estimating the area of standard cell layouts has been written as
part of the more general ARREST area estimator. PLEST is based on a probabilistic
model for placement of logic. Given various design parameters, PLEST generates a
range of estimates for the possible shapes of the block layout. The program was applied
to a set of six layouts. The estimated chip area is, for all six chips, within 10% of the

measured area. Documentation for PLEST is attached and PLEST is available on tape.

Average wire length estimation is an important parameter in our estimation model. We
investigated the validity of Rent’s rule for standard cell designs. We developed a
scheme for estimating the Rent parameters and for using Rent’s rule to estimate the
average wire length. Comparison with real chip layout data will be the determining

factor in choosing the appropriate model for estimating the average wire length.

In the process of further validating and extending the standard cell area estimation

model we ran some test chip layouts on the MP2d layout system donated by RCA.

Higher-Level Estimation

We have investigated the area-speed tradeoffs exhibited by various RT-level constructs,
such as adders, multipliers and the like. Initial observations suggest that the area-speed
tradeoff curves tend to fit to curves of the type AT®=k where A and T are area and
time of the construct, respectively, k is a constant and « is an exponent dependent on

the type of construct and its bit width.

We have investigated the possibility of estimating the cost/performance tradeoff curve

of pipelined designs from the behavioral description.

In [3] we give a model for predicting cost-speed tradeoffs for pipelined designs. The
model includes prediction of number of operators and registers from a behavior
specification. It has been verified through the designs generated by the automated

pipeline synthesis program Sehwa.

3.2. Synthesis
The synthesis work on this contract began with a study of the relationship between
synthesis and verification. Further synthesis research has involved clocking scheme

synthesis, pipelined and non-pipelined data path synthesis and register allocation [17].

A General Methodology

In {15] The general relationship between register-transfer synthesis and verification is
discussed and common mechanisms are shown to underline both tasks. The paper
proposes a framework for combined synthesis and verification of hardware 1at supports
any combination of user-selectable synthesis techniques. The synthesis process can
begin with any degree of completion of a partial design, and verification of the partial
design can be achieved by completing its synthesis while subjecting it to constraints that
can be generated from a "template" and user constraints. The driving force was the
work done by Hafer [2] on a synthesis model. The model was augmented by adding
variables and constraints in order to verify interconnections. A multilevel,
multidimensional design representation [4. 1]is introduced which is shown to to be
equivalent to Hafer's model. This equivalence relationship is exploited in deriving
constraints off the design representation. These constraints can be manipulated in a
variety of ways before being input to a linear program which completes the
synthesis/verification process. An example is presented in which verification and
synthesis occur simultaneously and the contribution of each automatically varies,

depending on the number of previous design decisions.

The software illustrates the combined and verification of register-transfer designs.
Mixed integer-linear constraints are derived from partial designs and then solved using
mathematical programming. The missing design information is synthesized and design
information already present is verified. This technique is facilitated by the chosen
representation of the design information, which has an equivalence relationship with the

mathematical program variables.

- PSR S P — et — -~ -~ ...

o\

Clocking Scheme Synthesis

A theory of clocking was developed [8], [9], [13] and used as the basis for software which
automatically synthesizes clocking schemes. This software synthesizes clocking schemes,
given a partially complete register-transfer design. It determines the number and length
of clock phases, how pipelining is to occur, and how many registers (stage latches) are
required in the design in order for the clocking to work. The technique currently works
when there is no resource sharing during a major cycle of the clock, and is being
extended to exclude this limitation. The technique produces a 60% speed-up for a
Hewlett-Packard 21MX computer when compared to the original design. The potential
for application of the clocking scheme synthesis to more general systems, including

systolic arrays, is also described, and an example given.

The algorithms and implementation for clocking scheme synthesis handle large
problems. Currently, optimal clocking scheme synthesis for designs with about 120
modules and 300 interconnection nets takes 15 CPU minutes on a VAX/750.
Minimization of the number of stage latches (in terms of total bitwidth) has been
studied. The complexity of this problem when no degradation in performance is
allowed is the same as that of the general assignment problem, and is NP-Complete.
Several good heuristic solution techniques are being developed and compared. The
program CSSP has been documented and is available on tape to the public for a
minimal handling fee of $30. including documentation. A copy of the user’s guide is

attached.

A technique for automatic synthesis of clocking schemes for pipelined digital hardware
has also been developed [10], [9], [11]. Two steps in the synthesis process are considered:
the determination of number and location of pipeline partitions (stages) and the
insertion of delays in the pipe in order to achieve minimum throughput latency without
resource conflicts. We focus on a single reused resource in the same cycle, although
extension of the solution techniques to cover multiple reused resources is

straightforward.

Software exists to partition the system into stages subject to the number of stages or

bt |

the maximum stage time, and to insert delays into the pipeline.

The delay insertion algorithm has been proven to be optimal. Although the algorithm
performs exhaustive search, run times for large (20 stages) pipelines are less than a

minute on a VAX 11/750.

Pipelined Data Path Synthesis

Synthesis of pipelined data paths has been investigated [10], [9], [14] [12]. This synthesis
task involves the generation of data paths along with a clocking scheme which overlaps
execution of multiple computation tasks. A theory of general execution overlap has
been produced including four different scheduling techniques. We have produced a set
of techniques for the synthesis of pipelined data paths, and written Sehwa, a program
which performs such synthesis. The task includes the generation of data flow graph
along with a clocking scheme which overlaps execution of multiple tasks. Some
examples which Sehwa has designed are given in [3]. Sehwa can find the minimum cost
design, the highest performance design, and other designs between these two in the
design space. We believe Sehwa to be the first pipelined synthesis program published in

the open literature.

The theory and technique for pipeline synthesis have been extended so that conditional
branches can be handled. By handling conditionals, the technique can synthesize more
sophisticated pipelines which can execute more than one type of task. The technique
shares resources in an efficient manner, and thus produces cost-effective pipelines. This
makes it possible to use a single pipeline for multiple types of tasks instead of either a
complex reconfigurable pipeline or expensive multiple pipelines. This new extended

technique has been addéd to the existing pipeline synthesis program called "Sehwa".

Sehwa is written in franz LISP, and executes within minutes for problems of practical
size on a VAX 11/750. Documentation for Sehwa is also attached in the appendix, and

Sehwa is available on tape.

-

Non-Pipelined Data Path Synthesis

A new RT-level non-pipelined datapath synthesis technique has been developed and
programmed in Franz Lisp [16]. and example datapaths synthesized. The program
(MAHA) takes a data flow graph and a set of modules as input. The algorithm used is
based on a linear module assignment to critical path operations, followed by a cost-
based assignment using the concept of the “freedom". The freedom is a measure of
tightness of the time limit for the whole input data flow. Operations with the least
freedom are scheduled first. The program either minimizes cost subject to a time

constraint, or maximizes speed, subject to a cost constraint.

MAHA is written in Franz LISP, and rewritten in C, and executes within minutes for
problems of practical size on a VAX 11/750. MAHA documentation is attached, and
MAHA is available on tape.

Register Allocation

The REAL REgister ALlocation program use a track assignment algorithm taken from
channel routing called the Left Edge algorithm. REAL is optimal for non-pipelined
designs with no conditional branches. It is thought that REAL is also optimal for
designs with conditional branches, pipelined or not. Experimental results are included
in [7], which illustrate the optimal solution found by REAL. REAL will be used to
process designs output from MAHA and Sehwa. A summary of this research was

described in [17].

3.3. Application of Design Representations

A VLSI design representation called the Design Data structure (DDS) has been
developed at USC as part of the USC ADAM (Advanced Design AutoMation) project
[4], [1]. The data structure based on this representation is implementation-independent
and can be regarded as a general hardware design representation schema. [t is
characterized by four nonisomorphic hierarchies, which collectively describe the system
under design. [t has been used for a number of synthesis and analysis tasks including
Sehwa and MAHA. Its requirements are being analyzed to determine the design and/or
selection of appropriate user interfaces, including one or more hardware descriptive

languages.

A working prototype of a program called Catalog has been constructed. As a part of
the Advanced Design AutoMation (ADAM) system under development at USC, Catalog
provides a format for storing and a method of accessing information about cell libraries
and their contents using the DDS. Catalog provides a user-friendly interface between
the database and other programs and will include a goal-driven macro-cell constructor
called Librartan which combines cells from the selected library to form higher level
cells. At the top level, Catalog is capable of guiding the user in the selection of a
proper library. Catalog also provides detailed information concerning the data flow
behavior, logical structure, physical details, and timing of each cell in the catalog in a
format readable by a user or usable by a program. Work on Librartan and an interface

with an object-oriented semantic data base which has been constructed under 2 separate

contract is continuing.

4. PERSONNEL SUPPORTED
Alice C. Parker was supported as principal investigator 9/83 - 8/86.

Sarma Sastry was supported as a research assistant 9/83 - 12/84. Dr. Sastry was

awarded a Ph.D. degree Jan. 1985, and is an Assistant Professor at USC.

Fadi Kurdahi was supported as a research assistant 9/83 - 8/86. Mr. Kurdahi expects
to graduate June 1986.

Nohbyung Park was supported as a research assistant 9/83 - 12/85 and as a
Postdoctoral Research Associate 1/86 - 6/86. Dr. Park received his Ph.D. degree Dec.

1985, and is an Assistant Professor at University of California, Irvine.

David Knapp was supported as a research assistant 9/83 - 6/84. David Knapp received
his Ph.D. degree Dec. 1986, and is an Assistant Professor at the University of Illinois.

Jorge Pizarro was supported as a research assistant 1/86 - 6/886.

10

References

(1] Granacki, J.
Understanding Digital System Speci fications Written tn Natural Language.
PhD thesis, Dept. of Electrical Engineering - Systems, University of Southern
California, December, 1986.

[2] Hafer, L., and Parker, A.
A Formal Method for the Specification Analysis, and Design of Register-Transfer
Level Digital Logic.
IEEE Transactions on Computer-Aided Design CAD-2(1), January, 1983.

[3] Jain, R., Parker, A.C., and Park. N.
Predicting Area-Time Tradeoffs for Pipelined Design.
submitted to The 1987 Design Automation Conference.

(4] Knapp, D. and Parker, A.
A Unified Represention for Design Information.
In Proceedings of the IFIP Con ference on Hardware Description Languages.
IFIP, August, 1985.

[5) Kurdahi, F. and Parker, A.
Area Estimation of Standard Cell Designs.
Technical Report DISC-84-2, CRI-85-05, EE-Systems Dept. USC, 1985.

6] Kurdahi, F. and Parker, A.
PLEST: A Program for Area Estimation of VLSI Integrated Circuits.
In Proc. 28rd Design Automation Conf., pages 467-473. [EEE and ACM, June,
1086.

(7] Kurdahi, F., and Parker, A.
REAL: A Program for Register Allocation.
November, 1986.
Submitted to the 1987 Design Automation Conference.

[8] Park, N. and Parker, A.
Synthesis of Optimal Clocking Schemes for Digital Systems.
Technical Report DISC/84-1, Dept. of EE-Systems, University of Southern
California, May, 1984.

[9] Park, N.
Synthesis of High-Speed Digital Systems.
PhD thesis, Dept. of Electrical Engineering, University of Southern California.
September, 1985.

(10] Park, N. and Parker, A.
Synthesis of Optimal Pipeline Clocking Schemes.
Technical Report DISC/85-1, Dept. of EE-Systems, University of Southern
California, January, 1985.

[11]

[13]

14]

[16]

[17]

[18]

[19]

[20]

11

Park, N. and Parker, A.C.

Synthesis of Optimal Clocking Schemes.

In Proceedings of the 22nd Design Automation Con ference, pages 489-495.
IEEE and ACM, June, 1985.

Park, N. and Parker, A.

Sehwa: A Program for Synthesis of Pipelines.

In Proc. 28rd Design Automation Conf., pages 454-460. IEEE and ACM, June,
1986.

Park, N. and Parker, A.C.

Theory of Clocking for Maximum Execution Overlap of High-Speed Digital
Systems.

submitted to IEEE Transactions on Computers.

Park, N. and Parker, A.C.

Sehwa: A Software Package for Synthesis of Pipelines from Behavioral
Specifications.

submitted to IEEE Transactions on Computer-Aided Design.

Parker, A., Kurdahi, F. and Mlinar, M.

A General Methodology for Synthesis and Verification of Register Transfer
designs.

In Proceedings of the 21st Design Automation Conference. ACM SIGDA, IEEE
Computer Society, June, 1984.

Parker, A.C., Pizarro, J. and Mlinar, M.

MAHA: A Program for Datapath Synthesis.

In Proc. 23rd Design Automation Conf., pages 461-466. IEEE and ACM, June,
1986.

Parker, A.C., and Hayati, S.
Automating the VLSI Design Process.
accepted for publication in Proceedings of the IEEE.

Sastry, S.

On the Relation between Wire Length Distributions and Placement of Logic on
Master Slice ICs. '

Technical Report, Digital Integrated Systems Center, Dept. of EE-Systems.
University of Southern California, October, 1983.

Sastry, S.
Wireability Analysis of Integrated Circuits.
PhD thesis, University of Southern California, 1984.

Sastry, S. and Parker, A. C.

On the relation between wire length distributions and placement of logic on
Master Slice ICs.

In Proceedings of the 21st Design Automation Con ference. June, 1984.

Appendix A

| A Guide To

| CSSP

) (Clocking Scheme Synthesis Package)

Version 2.1

By
Nohbyung Park
July 1986

Please direct inquiries to :
Dr. Alice Parker
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089-0781
Arpanet address : parker@usc-cse.usc.edu

CSSP Manual

Table of Contents

—

. INTRODUCTION
. INPUT FORMAT
2.1. Input File Format
2.1.1. Node-set List
2.1.2. Edge-set List
2.2. Pre-Placed Registers
2.3. Examples
3. BASIC OPERATIONS OF THE CSSP
4. GLOBAL ATOM VARIABLES
5. EXAMPLES
REFERENCES
APPENDIX

(]

O 1L W WD

—
> O O

~—

CSSP Manual

Figure 2-1:
Figure 2-2:

Example 1
Example 2

List of Figures

CSSP Manual 92

1. INTRODUCTION

This document contains a brief introduction to the CSSP (Clocking Scheme Synthesis
Package) which implements the clocking scheme synthesis algorithms developed by
Nohbyung Park [Park 84, Park 85a,b]. We assume that the readers are familiar with
the clocking scheme synthesis algorithms described in [Park 84. Park 85a.b].

Section 2 describes the input requirements of the system. Section 3 describes the
operations of major routines of the system and how to use them. In Section 4, the
global variables containing the current results of the clocking scheme synthesis and
critical path analysis are described. Section 5 shows several example runs of this

package.

2. INPUT FORMAT

The input to the CSSP consists of one or more directed acyclic graphs each of which
is a Microcycle Execution Graph. The description of the input MEGs (Microcycle
Execution Graphs) to be analyzed must be stored in a file. The input file must contain
two lists, a node-set list and an edge-set list. Section 2.1 describes the formats for these
lists. In Section 2.3, the types and usage of the pre-placed registers are described. In
Section 2.3, two example of MEGs and their node and edge lists are given. Besides the
node and edge description, the user can specify the default delay times, Dss and Dsp

[Hafer 83], of the stage latches to be used. If not explicitly specified. they are set to zero.

2.1. Input File Format
An input file contains an ordered set of two LISP lists, <node-set> and <edge-set>.

file ::= dxde-set> <edge—se>

Node-set contains the description of the functional mocules in the input micro-cycle
graph(s). Edge-set contains the description of the interconnections between the nodes in
the input micro-cycle graph(s). If the input file format is not correct, the system will
ask for a new file name. Any file can be edited using the edit command (refer to Section

3).

LJ...A e Bt e bl o n e A e = - . —

CSSP Manual 3

2.1.1. Node-set List
Node-set is a list of node-description lists. A node description list consists of the name
of the corresponding functional module and its worst-case propagation delay. A node-set

must contain at least two nodes.
qQode-set> 1= (Qde> de> {<ade>}”)
Qode> = (edename> <apd>)

<odename> ::= a string of alphamumerics
<apd> = mumber

The nodename of each node must be unique and can be up to 80 characters long. mpd
is the worst case (longest) delay time of the corresponding functional module. mpd can
be zero if the node does not represent a real operational module (e.g. a dummy root

node).

2.1.2. Edge-set List

An edge-set is a list of edge-description lists. An edge description is a list of up to
seven-tuple of edge name, source node name, sink node name, bitwidth (bw), the
number of delay registers (dr), the number of bypass registers (br), and the number of
pre-placed stage latches (sl). The first four fields are mandatory. The types and usage

of the registers will be discussed in Section 2.2.

<edge-set> ::= (<edge> {<edge>}”)
<edge> ::= (<edgename> <source> <sink> <ow> [<dr> [<or> [s111D)

<edgename> ::= a sring of alphammerics
<soaree> ::= Jxdename>
<sink> = edename>

<ow> ::= integer
<dr> ::= integer
<> = integer
<sD ::= lnteger

Edge names must be unique. Each edge must have one source and one sink node.

Therefore, a root node with zero mpd must be used for all the input edges. and a

CSSP Manual
terminal node with zero mpd for the output edges.

2.2. Pre-Placed Registers

Pre-palced registers are classified into three types:

1. Delay registers: registers which are used either to read or to write but not
to write and read during one micro cycle. Mostly used to synchronize

input/output data flow. These registers are carriers for values from
microcycle to microcycle.

Example: Registers in a systolic array which are clocked all at once.

W

. Bypass registers: registers which are written and then read during one
micro cycle. These registers do not affect the stage partitioning except the
fact that each of them causes additional time delay equal to Dss + Dsp.

3. Pre-placed stage latches: registers which are pre-placed to force certain
edges to be included in a cutset.

If the corresponding fields of these registers in an edge description are unspecified they

are set to zero.

P 'S PGP . e A . . e e

T\

- ~ -y -~

CSSP Manual

2.3. Examples

' 2IMC-E QU NoBranch Group Instructions

:Node List
((v110) (270) (vV320) (v4 15) (V5 15) (V6 20)
W7D B (v920) (V0 10) (V12 15))

;Eige List
(PAVIV21500) (QF1 v2v3500)
(F2 v2 v 5 0 0) (qF3 v2 v6 50 0)
(IF4 v2 v6 5 0 0 (Pv2Vvi2400)
Cvi2v3200 (@AUVI2w200
RVvi2v5200) (ST vi2 v8 2 0 0)
S1v3V71000) (@©S2vav8400)
CBvEv9200) (C4 v6 v10 10 0 0)
AT V78 1600) LTV 1700
(QUTFUT v9 v10 18 0 0))

Figure 2-1: Example 1

Figure 2-2: Example 2

LL —— A‘,_“._ PSR SN P NN emtant —— PO v

ﬁ - -
CSSP Manual
§(P,Q)
Y; +3
P
R3 0
d(P,Q1=0:P#9
x; J‘ 1:P=Q
a0 al a2 aj
. . 3
| A systolic array evaluating Zj-o G(X‘_j.aj).
‘ ; Systalic Array far Ga.valutien
! ; node 1ist
(
| @eltal 3) (delta2 3) (deltad 3) (deltad 3)
(add1 7) (a2 7) (dd3 7)
)
|
;edge 1ist
ro ¢
(e0 deltal delta2 1 1 O) (el delta2 delta3 1 0 0)
, (2 delta3 deltd 1 1 O) (e3 deltal add3 11 Q)
| (e4 delta2 a5 1 0 0) (e5 delta3 addl 1 0 0)
(e6 deltat xid1 1 0 O) (67 adi a2 1 1 0)
Bad2 add3 110
)

CSSP Manual

~1

3. BASIC OPERATIONS OF THE CSSP
The CSSP consists of four major procedures, init, kpart, opart and cp. These main
synthesis procedures together with other utility routines are interfaced to a user through

a command line interpreter.

For more details of these procedures, the reader is urged to refer to the source code in

the Appendix.

init [filename]

This procedure initializes the CSSP with a new design to be analyzed. Filename is
the input file containing the description of the MEG(s) to be analyzed. This procedure
reads in the input graph and sets up necessary data structures. For the input file

format, refer to Section 2.

set
The user can set the register set-up time, Dss, and the propagation delay. Dsp. Default

values are zeros.

kpart [stage-time limit]
The procedure kpart partitions the MEG(s) into the minimum number of stages each
of which has stage propagation delay no longer than stage-time [imit. The resulting

edge cutsets, the number of stages, and stage propagation delays are returned.

opart [k]

The procedure opart partitions the MEG(s) into exactly k partitions whenever it is
possible (there must be at least one directed path with more than k nodes with non-zero
propagation delays in the MEG(s}). If there are more than one such partitions. opart
chooses one with shortest maximum-stage-propagation-delay. The results returned are

the same as that of the kpart procedure.

cp

The procedure ¢p finds the critical path(s) in the MEG(s). The procedure cp uses
actual module propagation delays to compute the critical path delay. There can be more
than one critical path. The outputs from the procedure c¢p are lists of nodes and edges

on the critical paths and the lengths of the critical path(s).

CSSP Manual R

exam
User can access the values of the atoms that are global variables. Refer to Section 4

for the description of global atom variables.

edit [file name]

Edit a file using emacs.

load [file name]
Load a file.

exit
Exit from the CSSP. On exit. the system asks whether the user wants to analvze the

results. The analyzed results are written out to a file cssp.log.

CSSP Manual 9

4. GLOBAL ATOM VARIABLES
The global atom variables can be examined using the exam communi 1t any stage of
the execution of the CSSP. Especially, when there is run-time error, these viriubles can

be used to trace the cause of the error.

intervals A list of all the possible stage times. This is an enumeration of the
longest path delays from each node to every node.

dss Set-up time of the stage latches.

dsp Propagation delay of the stage latches.

edgelist Edge-set list.

nodelist Node-set list.

numofnodes The number of nodes.

mpd A list of module propagation delays of the nodes.

numofedges The number of edges.

BWlList A list of the bitwidth of the edges.

outvalues A list of output edges.

invalues A list of input edges.

Imax Current maximum stage-time limit.

k The number of stages as the result of the last stage partitioning.

eh Current set of edges being traversed during stage partitioning.

nh Current set of nodes being visited during stage partitioning.

- - I - b - — —

CSSP Manual

5. EXAMPLES

Example 1: The MEG of Figure 1
-> (cssp)

Welcame to G5!
Use <init (filename]> ccmmand to read indtdal micro-cycle graph(s).

Type <help> ar <help init> far help.

C=r> inlt exi

IR REEERERER:
SOOI WM O
Wowon o
8
8

Yoloiciok FDGE LIST sioicioick
EXE NAME S SING BY [R R S1)

=PAVI V21500
=IF1 v2v3500)
=(TF2v2v4 500)
=(F3v2v6500)
=(dF4 v2 v8 5 0 0)
=Pv2Vvi2400
=(RCvi2v3200)
=AU vi2 v 20 0)
=R vi2v6200)
=CET VI2 V620 O
=L v3Vv7 100 0)
=Rvv8400
=Bvwve200

® ® ® ® ® ® ® D> O
O ONOMLE WON-O

)

oo o
Bk o

CSSP Manual

e 13 =(C34 v6 v10 10 0 0)
e 14 =(INRUT v7 v8 16 0 O)
e15 =RESITv8 V3 170 0)
e 16 =(QUIFUT v9 vi0 16 0 0)

o

P> set
Des? 5

Dep? 10
CSSP> part 100

soloickiciiik FDGE-CQUISETS sobobokloioioloiok
citset 1 =(49382716)
catset 2 =(12 13 11 14)

cutset 3 =(13 16)

deioiok STAGE-PROPAGATIIN-TELAY setoiciok
stage-delay 1 =100
Stage-delay 2 =60
stage-delay 3 =100
Stage-delay 4 =20
Total Processing Time: 1 secads 32 (1/60 sec.)

P> op

CRITICAL PATH NTES
012678910

QRITICAL PATH EDGES
05610141516
Total Processing Time: 1 secnds 20 (1/60 sec.)

GSP> opart 3

Realizahle Stage Times are:
(86 95 100 105 115 120 125 130 140 145 150 160 165 210 230 23B)

Enter kpart with stage time: 130 —>
Enter kpart with stage time: 106 —>
Enter kpart with stage time: &6 —>
Enter kpart with stage time: 100 —>

NN K® N
n i nn
b N

“Enter kpart with stage time:" 105

Joioicicicioloicick EDGE-CJISETS stoivioioicioiciok
citset 1 =(493827186)

CSSP Manual

cutset 2 =(12 13 11 19

sk STAGE-PROPAGATIIN-TELAY okotokk
stage—delay 1 =100
stage—delay 2 =60
stage-delay 3 =105

Total Processing Time: 1 seconds 32 (1/60 sec.)

dmax = 106
Total Processing Time: 11 seconds 9 (1/60 sec.)

P> exit
Do you want to analyze the results? y

sk Edge QUtsets ok
Stage 1: IF4 DST IF3 SR IF2 AU IF1 SRC
Stage 2: CS3 CS4 CS2 INRUT

*ex Stage Propagation Delays sk
Stage 1: 100
Stage 2: 60
Stage 3: 106

Minimm Clock Period (tey) = 106
Number of Clock Phases (Max.) = 3
Optimal Clock Cycle:
When resync. rate >= 0.365 : 1.5
When resync. rate < 0.385 : 106
BYE.
t

Example 2: The MEG of Figure 2.
-> (cssp)

Welocme to CGSSP!

Use <init (filename]> commend to read initdal micro-cycle grapi(s).

Type <qelp> ar <help init> far help.
CSP> 1nit lels
soioioiok MIXLE LIST etciciok

MILLE NAE MDnisec>)

T 1

CSSP Manual

"3
23
~v3 3
(v4 3
~ D
v D
V7D

H 8 B8B8B8B8B
DO WN - O
L T | T I T I T I

(EDGE NAVE SRC SINK BW [R IR)

=@ Vviv2110
=(el v2Vv3 1 00)
=(e2v3v4110)
=(e3Vviv7110
=(e4 V28 100)
=(e5 v3 v5 1 0 0)

® ® ® ® ®» ® O O O
OO WNE=O

=(e6 v4 V5 1 0 0)

, =(e7 V5 v6 1 1 0)
, =(eB V6 V7 1 1 0)
} SP> set
' Dss? 5
r Dep? 5
) o> o
! Dss? 1

Dsp? 1

CSP> kpart 8

sotolooioioioiok EDGE-CUTSETS soboiobotoiiololok
catset 1 =4 356

p soioiok STAGE-PROPAGATION-CELAY sotoiciok
Stagedelay 1 =8

stagedelay 2 =8
Total Processing Time: 57 (1/60 sec.)

CSSP> opart, 2

Realizable Stage Times are:
@811 149

Enter kpart with stage time: 11 —> k= 2

IS P SN W S U

CSSP Manual

{ Piter kpart with stage time: 8 —> k= 2

"Enter kpart with stage time:" 8

soiciololioiciolk EDGE-CQUISETS otclolototoiololok
cutset 1 =4 356)

Yootk STAGE-PROPACATION-TELAY sobotokok

Stagedelay 1 =8

stage-delay 2 =8
Total Processing Time: 43 (1/60 sec.)

dex = 8
ﬁ Total Processing Time: 3 seaads 1 (1/60 sec.)

G exit
Do you want to analyze the results? y

Hick Erlge Cutsets ok
F Stage 1: ed e3 €5 6
|

L bk Stage Propagation Delays ek
Stage 1:8

Stege 2: 8

Minimm Clock Perlod (tcy) = 8

Number of Clock Phases (QMax.) = 2

Optimal Clock Cycle = 8

BYE.

v
->

gy . PR

14

s

CSSP Manual

REFERENCES

[Park 84]

[Park 85a)

[Park 85b]

[Hafer 83]

[Leiserson 83|

Park, N. and Parker, A.

Synthesis of Optimal Clocking Schemes for
Digital Systems.

Technical Report DISC/84-1, Dept. of EE-Systems
University of Southern California, May 1984.

Park, N. and Parker, A.
Synthesis of Optimal Clocking Schemes.

In Proceedings of the 22nd Design Automation Con ference
ACM and [EEE, June 1985.

Park, N.

Synthesis of High-Speed Digital Systems.

PhD Thesis, Dept. of Electrical Engineering-Systems
University of Southern California, September 1985.

Hafer, L. and Parker, A.

A Formal Method for the Specification Analysis, and
Design of Register-Transfer Level Digital Logic.

[EEE Transactions on Computer- \ided Design, CAD-2(1),
January 1983.

Leiserson. C. E., Rose, F. M. and Saxe. J. B.
Optimizing Svnchronous Circuitry by Retiming.

In Proceedings of Third Caltech Con ference on VLS[
Computer Science Press, 1983.

(sSSP Manual

APPENDIX

e ————— —— — g~ = v—-r-—v S YT

CSSP

Program Listings

PO et .

Appendix I

Sehwa

USER’S MANUAL

A Pipeline Synthesis Program

—_

The ADAM - Advanced Design AutoMation Project

University of Southern California

« w— - Awe— -y W

i .

Rajiv Jain

-y @~ ——— —-.T—'"

Please direct inquiries to :

Dr. Alice Parker, Department of Electrical Engineering - Systems, University of Southern California. Los
Angeles, CA 90089-0781. Arpanet address : parker@tsc —cse.usc.edu .

L._._A.‘_d PSR- EF Sr SG ¥ Sy— e .

INTRODUCTION

Sehwa is a program which synthesizes pipelined data paths from an input
dataflow graph. Sehwa performs allocation of functional modules and scheduling of
resources. Sehwa estimates the cost of registers and interconnects, but does not perform

the detailed allocation of these elements.

Sehwa is general purpose, in that it can take into account data dependencies,
conditional branching in the input specification and the resynchronization rate due to
exceptions. Sehwa finds the fastest design, the cheapest design and a range of optimal

designs in between these two extremes.

Sehwa was written in Franz LISP by Dr. Nohbyung Park as a part of his Ph.D.

dissertation [1]. It runs on a Sun workstation as well as Vax 11/750.

This document is Sehwa user’s manual. It is not intended to be a treatise on
pipelined synthesis ([1] is a good reference for this). It is assumed that the user knows
the capabilities of the program. It is also assumed that the user has experience of work-
ing on the BSD Unix operating system and an editor. Although the understanding of
this document does not require it, the user is cautioned that the use of Sehwa requires
the abovementioned skills. The document is divided into three sections : data prepera-

tion, how to run Sehwa and finally an example with results.
DATA PREPERATION

The input to Sehwa is a data flow graph in Park Normal Form [1]. PNF has a
LISP like structure and consists of two lists : the node list and the edge list. They are

(nodes (node_ 1_description) (node_ 2_description) .. (node_n_description))

w T T

(edges (edge_ 1_description) (edge_ 2_description) .. (edge_n_description))

The bold words are terminal and the words in italics are non-terminals.

The node description is specified as follows :
node_name node_type bit_width
where, node_name is the instantiation of the node, node_type is the operation per-
formed by the node and bit_width is the number of bits (in integer) handled by the
node. An example of node list is

(nodes (al add 16) (ml mult 16)).

The edges are similarly specified as :
edge_name source_node destination_node bit_width value_name
where, edge_name is the name of the edge, source_node is the node it starts from (if
the edge is an input edge from external the source_node is root), destination_node is
the node the edge connects to (in the case of the edge carrying a value external to the
data flow graph the destination_node is outport) and value_name is the value carried
by the edge. The value_name is especially useful where two (or more) edges emanating
from the same node carry the same value. An example edge list is

(edges (el root al 16 x) (e2 al m1l 16 e2) (e3 m1 outport 16 y)).

For conditional branching Sehwa has two reserved words dist and join. A node
is specified as one of these as
(node_name dist)
(node_name join).

Each dist node must pair up with a jotn node in the dataflow graph.

A complete list of reserved words recognized by Sehwa in the input file is :

nodes , edges , root , outport, dist and, join.

USING Sehwa

Having prepared the input file containing the data flow graph in PNF, we now
describe the use of Sehwa. As Sehwa is written in LISP, the user has to first enter the
LISP environment by typing

lisp*
The next step is to load the file contaning Sehwa source code and invoke it. This is
achieved through
[load 'Sehwa)]
[Sehwa)
Note the quote before Sehwa in the first command and the upper case S. On invoca-
tion, Sehwa will prompt for the input file and then for the information about the set of
modules used for implementing the nodes. The module information is specified as
module_name operation bit_width area delay
where, module_name is the name of the module, operation is the function performed by
the node, and delay is the module delay (it has to be an integer). An example of an 8
bit carry save adder description is

csadder add 8 0.5 30

Sehwa then prompts the user for latch information. The latch information is re-
quired to determine stage delays and in making estimate of register costs. The following
information is requested by Sehwa :

- Setup time of the latch
- Propagation time through the latch, and

- Area per bit of the latch.

L P
A carriage return is impi.cit after each command.

L . o~ A . P W S _— o —— -

Sehwa then proceeds to compute the boundary design points. At this point
Sehwa has all the information and the user can now proceed to get results by specifying
his cost/speed constraint. The constraint is specified by typing in order

cost (or) speed
constraint value
resynchronization value.
To exit the program type ezxit. Sehwa will then save the previous constraint results in a

file sehuwa.log and exit to the LISP environment.

Known bugs : There are situations which the user may come across while executing

Sehwa and due to the lack of suitable title they have been called bugs. These are :

1. At some point before the main synthesis loop, the user might wish to exit Sehwa. The
only effective way of doing that is by typing “C (control-C) and going to the LISP en-

vironment. There is no graceful way of doing this.

2. When Sehwa prompts for the first time for module descriptions, the program goes
into an infinite loop if the user types a carriage return only. The user then has to type

“C to break the infinite loop.
EXAMPLE and RESULTS

An example dataflow graph using conditional branches is shown in Fig. 1. The
input file in PNF and a sample run for the same is included. User typed words are
underlined. The results give a detailed account of the scheduling of operations. the
number of resources required, the latency, an estimated cost of registers and the total
estimated cost of the design. There can be situations in conditional branching when two

operations are scheduled in the same time step to the same module. [n this situation the

operation nodes which are designated for the same resource are clustered together in an-

gular brackets in the output.

REFERENCE

1. N. Park, "Synthesis of High-Speed Digital Systems", Technical Report CRI-85-23.

Computer Research Institute, University of Southern California.

-1

-

n1 :f n2 n3
n4 L2 D4| n7
- p3| N6 12
-4)n11
[02n8 n9 10

n21\ +7

Y

J4n18
n13 @g@ n15(+6,
[J2 n16

J3 17
‘E’Fﬂf’
J1 n20
BS|n22
n23 -7 +8) n24
J5| 025

Fig.1 Example Dataflow Graph

- -

rf X = e~

(nodes
(nl
(n2
(n3
(n4
(nS
(né
(n7
(n8
(n9
(nlo
(nll
(nl2
(nl3
(nl4
{nls
(nlé
(nl7
(nls
(nl9
(n20
(n2l
(n22
(n23
(n24
(n25

)

(edges
(vl
(v2
(v3
(vd
(v5
(v6
(v7
(v8
(v9
(v10
(vll
(v1l2
(v13
(vl4
(v15
(v16é
(v17
(v1g
(v19
(v20
(v2l
(v22
(v23
(v24
(v25
(v26
(v27
(v2s8
(v29
(v30

add 16)
add 16)
sub 16)
dist)
sub 16)
dist)
dist)
dist)
add 16)
sub 16)
sub 16)
add 16)
add 16)
sub 16)
add 16)
join)
join)
join)
sub 16)
join)
add 16)
dist)
sub 16)
add 16)
join)

root nl 16 vl)
root nl 16 v2)
root n5 16 v2)
root n2 16 v4)
root n2 16 v5)
root nl0 16 v6)
root nl2 15 v7)
root n3 16 v8)
root n3 16 v9)
nl n2l1 16 v10)
nl nl3 16 vl1l)
n2 n4 16 v1l2)
n3 n7 16 v13)
n4 n5 16 vl4)
n4 né 16 vl5)
root nll 16 v7)
n7 nl2 16 v17)
n7 nll 16 v18)
n5 n8 16 v19)
root n9 16 v10)
né n9 16 v21)
n6é nl0 16 v22)
n8 nl3 16 v23)
n8 nl4 16 v24)
root nl4 16 v25)
n% nl7 16 n26)
nl0 nl5 16 v27)
root nlS5 16 v28)
nl2 nl8 16 v29)
nll nl8 16 wv30)

w - - - - - -

1

(v3l
(v32
(v33
f (v34

(v35
(v36
(v37
(v38
(v39
(v40
(vél
(v42
(v43
(v44
(v45
] (v46
(va7
(v4s8

e 2R i

— T

nl3
nl4
nls
nls8
nlé
nl?7

nlé 16 v3l)
nlé 16 v32)
nl7 16 v33)
n22 16 v34)
n20 16 v35)
nl9 16 v36)

root nl9 16 v37)

nlo
n20
n20
n2l
n22
n22
n23
n24
n25

n20 16 v38)
n2l 16 v39)
n22 16 v40)
outport 16 v4l)
n23 16 v42)
n24 16 v43)
n25 16 v44)
n25 16 v45)
outport 16 v46)

root n23 16 v47)
root n24 16 v24)

el 00000

rajiv(l] >>lis
Franz Lisp, Opus 38.79

-> |load 'Sehwa!
[loa ehwa.

t

-> [Sehwal
U U SSS CCC SSS EEEEE H H W W
U u S S C C S S E H H W 1]
U U S C S E H H W W
U U SSs C === SSS EEEEE HHHHH W W
U U S C S E H H WWW
U U s s C C S S E H H WWW
uuu SSS CCC SSS EEEEE H H WW

WELCOME TO USC-SEHWA PIPELINE SYNTHESIS PACKAGE!'

x JSC Design Automation Group ***
Nohbyung Park

LI E SRR E RS RREEE SRR RS REEREREEESEEEEER]

PHASE 1

Input Processing and

Data Structure Initialization

1
/
‘
‘
‘
;R AR KRR A KKK RRK KKK XRKRKXRKR KK KK KK

Ne e wa . w N,

Input Data-Flow Graph (File Name)? Ek.l

Global buffer matrices allocated..

Data flow graph translated..

RS SRR R R EREERES R RRR RS RS ERRERERREREERESEE,]
PHASE 2

Module Selection and
Synthesis

I EEE RS SRS SRS SRR SRR RSR R RS RS R R

R . T PR PO
LTS PR R T T

Global data structure being constructed

IS SRR R SRS E RS RERESES R REEEESEEEEE;:

* . *
* WELCOME TO MODULE-SELECTION PHASE ~
* *

AEKXKKEEEREKAA R AR R AKARXIARAERAKEARRARAXNXARANRRN RN

Do you want instructions (y/n)? y

<INSTRUCTION FOR MODULE SELECTION>

This is an interactive and iterative module-selection

A —_— a Mmoo a eaan e e e S

y!ﬂ
2

3

> >

s

>

-y

—

routine. Type-in a module-description list for each
function whose name will be printed one by one.

MODULE DESCRIPTION FORMAT:
<module> ::= (<module_name><operation><bitwidth><cost><{delay_time>)

Each module_name must be unique among module names.

The bitwidth and module delay time (nsec) are positive
integers and the cost is a positive real number.

Ex1l: csadder8 add 8 0.5 30 -- An 8-bit carry-save adder

Ex2: TI74284 mul 4 2.0 60 -— TI 4-bit binary multiplier
Type carriage-return (CR) to continue

**% Function List **x
(function (op—node indices))

—~

0 (add (14 12 10 8 7 4 1 0))
1 (sub (2356 9 11 13))

For each function, type a module description list.
(Type carriage-return (CR) to skip for no change.)

> Function: add
Total number of nodes: 8
Max. number of possible evaluations: 6
Previous Assignment: None
(New) Module Description? a add 16 4200 340

> Function: sub
Total number of nodes: 7
Max. number of possible evaluations: 5
Previous Assignment: None
(New) Module Description? s sub 16 4200 340

Module Selection is complete!
Do you want any change (y/n)? n_

Stage Latch Information:
Dss (set-up time in nsec.) ? 11
Dsp (propagation time in nsec.) ? 5
Unit cost (per bit) ? 15.624

Computing All Possible Stage Times

Design-space boundaries computation started

LA AR AAESEE LS EERERER SRS RRsERREREREEES
* *

MY

s

* Design-Space Boundary Information *
* *

ST EERX SRR SRR RRRRRRRRR SRR SRt RS

>> Fastest Design:

) Nodes-to-stages Assignment:

Stage 0: 0O(nl) 1(n2) 2(n3) 15(n4) 16(né6)
' 17(n7)

Stage 1: 3(nS5) 4(n%) 5(nl0) 6(nll) 7(nl2)

18(n8) 22(nls)
Stage 2: 8(nl3) 9(nl4) 10(nlS) 20(nl6) 21(nl7)
Stage 3: 11(nl9) 19(n22) 23(n20)
Stage 4: 12(n2l) 13(n23) 14(n24) 24(n25)
Clock Cycle (initiation interval): 356
Stage Time (minor clock cycle): 356
Latency: 1
Effective Initiation Interval: 356
Resynchronization rate: 0 %
Total Cost: 77467.82399999999
Module cost: 63000
of modules:
a: 8
s: 7
Latch cost : 14467.824
Scheduling Algorithm Used: Forward-Maximum-Scheduling

>> Cheapest design:

Nodes-to-stages Assignment:
Stage 0: 18(n8) < 5(nl0) 3(n5) > 16(n6) 15(n4) 1l(n2)

Stage 1: 17(n7) 2(n3) 0(nl)

Stage 2: 22(nl8) 6(nll) 7(nl2)

Stage 3: 19(n22) 23(n20) 20(nl6) < 9(nl4) 11(nl9) > 21(nl7)
< 8(nl3) 4(n%) 10(nls5) >

Stage 24(n25) 13(n23) l4(n24)

4.
Stage 5: 12(n2l)

Clock Cycle (initiation interval): 4176
Stage Time (minor clock cycle): 696
Latency: 6

Effective Initiation Interval: 4176
Resynchronization rate: 0 %

Total Cost: 25852.008
Module cost: 8400
of modules:

a: 1
s: 1 _
Latch cost : 17452.008
Scheduling Algorithm Used: Forward-Feasible-Scheduling

>> Absolute Boundaries:
Absolute Minimum Cost: 25852.008

Absolute Minimum Initiation Interval: 356

ERXRRKERAARRAAAREANARARAAANRNR AR ARRARRANNAN

* *
* WELCOME!! to Main Synthesis Loop *
* *

I 2222822222520 222222222l R ash i

; Select Optimization Mode (cost/speed/exit)? cost

? Maximum Allowable Cost? 50000

Expected Resynchronization Rate (in %)? O

e TT—"——

Design in progress with:
Latency: 1
of modules: (6 5)
Stage times: (356 696 1036 1376 1716)

> Tentative Solutions Found

Nodes-to-stages Assignment:
Stage 0: 17(n7) O0(nl) 2(n3) 16(n6) 15(n4)
1(n2)
Stage 1: 22(nl8) 18(n8) 6(nll) 7(nl2) < 3(nS) 5(nl0) >
Stage 2: 21(nl7) < 8(nl3) 4(n9%) 10(nl5) >
Stage 3: 19(n22) 23(n20) 20(nl6) < 11(nl9) 9(nl4) >
Stage 4: 24(n25) 12(n2l) 13(n23) 1l4(n24)
Clock Cycle (initiation interval): 356
Stage Time (minor clock cycle): 356
} Latency: 1
Effective Initiation Interval: 356
Resynchronization rate: 0 %
Total Cost: 61417.776
Module cost: 46200
of modules:
a: 6
s: 5
Latch cost : 15217.776
Scheduling Algorithm Used: Forward-Feasible-Scheduling

e

Design in progress with:
Latency: 2
of modules: (3 3)
Stage times: (356 696 1036 1376 1716)

> Tentative Solutions Found

Nodes-to—-stages Assignment:
Stage 0: 1(n2) 2(n3) 15(n4) 17(n7) 16(n6)
0O(nl) 7(nl2) < 3(n5) 5(nl0) >
Stage 1: 18(n8) 6(nll) < 4(n9) 8(nl3) 10(nl5) > 22(nl8) < 11(nl9) 9(nl4) >
21(nl7) 20(nl6) 23(n20) 19(n22) 1l4(n24)
13(n23) 12(n2l) 24(n25)
Clock Cycle (initiation interval): 2072
Stage Time (minor clock cycle): 1036
Latency: 2
Effective Initiation Interval: 2072

. A - ——— A A oo - i —

A

’ Resynchronization rate: 0 %

Total Cost: 32683.896
; Module cost: 25200

of modules:

‘ a: 3
‘ s: 3
! Latch cost : 7483.896000000001

Scheduling Algorithm Used: Backward-Feasible—Scheduling

1(n2)

i *xx SOLUTION *=*x
) Nodes-to-stages Assignment:
Stage 0: 17(n7) O(nl) 2(n3) 16(n6) 15(n4)
}
Stage 1: 22(nl8) 18(n8) 6(nll) 7(nl2) < S(nl0) 3(n5) >
Stage 2: 20(nl6) 21(nl7) < 8(nl3) 4(n9%) 10(nl5) > 9(nl4)
! Stage 3: 19(n22) 23(n20) 11(nl9)
. Stage 4: 13(n23)
! Stage 5: 24(n25) 14(n24) 12(n2l)

' Clock Cycle (initiation interval): 712
Stage Time (minor clock cycle): 356
Latency: 2
Effective Initiation Interval: 712
Resynchronization rate: 0 %
Total Cost: 41167.728
Module cost: 25200

of modules:
a: 3
s: 3
Latch cost : 15967.728
Scheduling Algorithm Used: Forward-Feasible-Scheduling
* Second Alternative:
Nodes-to-stages Assignment:
Stage 0: 22(nl8) 7(nl2) 6(nll) 18(n8) 17(n7)

< 3(95) 5(nl0) > 0/nl) 2(n3) 16(n6) 15(n4)

< 8(nl3) 4(n9%) 10(nl5) >
Stage 2: 24(n25) 12(n2l) 13(n23) 1l4(n24)
Clock Cycle (initiation interval): 696
Stage Time (minor clock cycle): 696
Latency: 1
Effective Initiation Interval: 696
Resynchronization rate: 0 %
Total Cost: 54933.816
Module cost: 46200
of modules:
a: 6
s: 5
Latch cost : 8733.816000000001
Scheduling Algorithm Used: Forward-Feasible-Scheduling

1(n2)
F’ Stage 1: 19(n22) 23(r20) 20(nl6) < 11(nl9) 9(nld4) > 21(nl7)

Select Optimization Mode (cost/speed/exit)? exit
Solution List is written out to <sehwa.log>.

- T T Ty e T R T R

L‘—AL—‘.AJ U — PR, e a o

* * *

* kK

??

Bye ..

D

Goodbye

->

e A am o ame A o Lf‘}v‘

M e e mem——

P

L.A‘-_—-E‘-‘_-.IA - ——

ke, Bea . — —_

Appendix I

MAHA
USER’S MANUAL

A Datapath Synthesis Program

The ADAM - Advanced Design AutoMation Project

University of Southern California

by
Mitchell Mlinar

Please direct inquiries to :

Dr. Alice Parker, Department of Electrical Engineering - Systems, University of Southern California. Los
Angeles, CA 90089-0781. Arpanet address : p(lrker@tsr ~cse. usc.edu .

L..___.h‘_.‘_k._..‘“- bt et ettt e ool

Table of Contents

1. Introduction
2. MAHA

2.1 Introduction
2.2 MAHA Inputs

2.2.1 Node Description

2.2.3 Module Description
2.3 Running MAHA
2.3.1 MAHA Automatic Operation
2.3.2 MAHA Manual Operation
2.3.2.1 Manual Partitioning
2.3.2.2 Manual Clock-cyele Entry
2.4 MAHA Output
2.5 An Example
3. Converting to PNF from a VT description

3.1 V'T Pre-processor: vt-pre.out
3.2 \'T Translator: vtran.l
3.3 Extracting the PNF datafiles: makpnf.l
3.4 LISP-to-C MAHA converter: cnvrtm.l
4. File Formats
4.1 Dataflow description file: C
4.1.1 Node Description
4.1.2 Edge Description
1.2 Dataflow description file: LISP
4.2.1 Node list description
4.2.2 Edge list description
4.3 Module description file: C
4.4 Module description file: LISP

PO OO T T -

O W

— e —
_—— &

te o N
TN

121 N1
S L © L~}

30
30
31
32
33
33

1. Introduction

The ADANM system at the University of Southern California has as a goal the
fabrication of hardware from a high-level description. One portion of that system
includes dur- -th svnthesis. MAHA is a non-pipelined datapath synthesis program
which takes 1< its input a dataflow graph description. This graph is derived from the

DDS (Desiz ata Structure) which is at the heart of the ADAM system.

This man: Jlescribes MAHA as well as a number of utilities which generate input
data files | = MAHA. One set of utilities converts from a VT (Value-Trace)
description © I’NF (Park Normal Form) - the data structure used by the MAHA
program. .\ ther set of utilities convert from the older LISP-format PNF data
striuctures to e current text format used by the C version of MAHA.

e e Nt e e e A - -

2. MAHA

This section details the use of the MAHA prograr [tems which will be discussed
include the input data structures to MAHA. running MAHA. and the output file
which may be generated by MAHA.

2.1 Introduction

MAHA is a program which takes as an input a dataflow graph. module library, and
global constraints and outputs the allocation data which includes the timing, bindings,
and cost of the synthesis. MAHA can work with the PNF description directly,

although it can also work with any properly conditioned VT description.

Getting to PNF from a VT description is discussed in the next chapter. A detailed
description «f C functions and the internal data structure of MAHA are presented in

Appendix I.

2.2 MAHA Inputs

Although MAHA relies on an interactive environment to control program flow, the
dataflow gra;-h cannot be entered at runtime. Two data input files are required by
MAHA: a .} " "low description and a module library. The dataflow description consists
of a single ile which contains both a list of nodes and a list of edges: the module library
consists of n-1iles and their associated cost, speed. and bit-width. Although both the
dataflow file :d library file may be named in any manner of your choosing, it is
recommended that the primary names be identical while changing the extension to
indicate the type of file. For example. the dataflow might be contained in garbage.dfg

and the moduie library in garbage.lib.

The data/f' - description file contains the description of a complete dataflow graph.

The graph I~ 1 number of restrictions on it:

e The gr-'h can contain no more than 1000 nodes or N0 edges.

e The g, 1l must be acyclic (no loops).

.

e The tup of the graph is indicated by the reserved word ront which cannot
be defined elsewhere. Root has NO input edges, only output edges. If vou
do not have a root node, MAHA will add one for vou along with the
necessary edges to it. [f vou have a root node, it shoul ! be of type dummy
since it does not phyvsically represent any operation.

e The bottom of the graph is indicated by the reserved word outport and
cannot be delined elsewhere. Outport has NO output edges. only input
edges. If vou do not have a outport node. MAHA will add one for vou
along with the necessary edges to it. If you have a outport node. it should
be of type dummuy.

e Conditional branches are indicated by the reserved words dist for fork
(distribiution) nodes and join for join nodes. Dist has one input acc and one

Or nore cutput arcs; join is the converse.

o Parall:l branches are indicated by the reserved words parbeg where the
parallel Lranches begin and parend where the parallel branches recombine.

o In the cuse of multiple output edges from a given node, MAHA will attempt
to treat them as parallel branches with an implied parbeg. The implied
parend f{or this sronp is at outport.

The datafiw description file has both node and edze information in a one node
tedge) per line format as follows:
ncde—description—1
node—descriptdan—2
node—description-n
edge—descriptian-1
edge—descripuin-2

..................

Note the blank line between the node and edge descriptions: this is a

REQUIREMLENT.

2.2.1 Node Description

A node description contains the node name, node type, and bitwidth as follows:
node-name node-type bitwidth

Node-name is any 15 character name which is unique to the dataflow graph. The
node-type is also a name of up to 15 characters which specifies the function of the node:
this node-type MUST match one or more module functions. Bitwidth is a positive
integer from O to whatever: a bitwidth of 0 informs MAHA that this node is an

implied node {e.g. one that has no associated cost or delay). For example,
addl add 8

names an adder addl which perforins an add function and is of bitwidth 8 There must

be at least one add in the module libraryv. IKeep in mind that case is important: hence,

add and Add are NOT the same.

A brief example of of some valid node names are shown below.

3 aamy 1

xi pt bit-read 1
hello d-flop 140

me add 6

me too sub 5
you-are-fired aumry O
ADAM rlies ar 2
Allce cp 2

2.2.2 Edge Description
An edge deseription follows the node deseription in a datallow file with an inte.vening
blank line. It consists of a source node, destination node. and bitwidth.

sarcenode destunation—nocde bltwidth

Like the node description. source-node and destination-node are names up to 15
characters in length. The node names MUST match names previously included in the

node description.

An example of edge descriptions using previously listed node names are shown below.

Wt

hello me 8
hello Alice 16

Alice yarare-fired 16
ADAM rules me too 16

2.2.3 Module Description

The second input data file is the module library which consists of a list of individual
functional modules and some of their physical parameters. The form of the module

library is:

mxiule-description-1
mdule-description—2

....................

Each module-description is of the form:

modulename module-function bit-width prop-delay cost

Module-name is a name of up to 15 characters which is unique to the module library.
Module-function is also a name of up to 15 characters and describes the general
function of the module. Some tyvpical general functions are add. sub. or. and, and
d-flop. The node-type of every node description MUST match the module-function of
one or more modules. Bit-width, prop-delay. and cost are integer values which
describe the bit width of the module, propagation delay in some arbitrary units, and

cost (usually area. although could be power. etc.) in some arbitrary units.

When read into MAHA., the module library is reduced to a list which is linked to the
node list. Specifically, for each node-type named in the node list, the module library is

scanned as follows:

1. If the node-type and module-function are the same. proceed to step 2. else
proceed to step 7.

2. If the module bit-width is less than or equal to zero, proceed to step 3, else
proceed to step 5.

3. If the module bit-width is zero, the actual cost and prop-delay are defined as
the module cost times the node bit-uidth and module prop-delay times the
node bit-undth, respectively. Proceed to step 6.

LLA—A‘-—A_,_“__A_—*AMML_A e e e A A . e

— -y e

1. If the module bit-width is less than zero. the actual cost is the module cost
times the node bit-uidth whereas the prop-delay is simply the module
prop-delay (no adjustment). Proceed to step 6.

5. If the module bit-uidth is less than the node bit-width. proceed to step 7.

6. The cost and prop-delay information is added to the matching module list.

-1

. If there are more modules to check, proceed to step 1. else proceed to step 8,

8. An average module is created which has as its prop-delay (cost) the average
of all prop-delays (costs) from the matching module list.

A pass over the module library is made for each node to create the average module
which implements each node function. If two nodes generate the same matching

module list. they will point to the same average module.

Since an average module is used by MAHA. a module library should contain identical
functions with different prop-delays. costs, and bit-widths. If vou wish to have direct
control over the module library. then only a single compatible module should be

included in the library for each node.

2.3 Running MAHA

This version of MAHA is written in C. To execute MAILA. tyvpe
maha.out

Once MAHA begins execution., it first inquires for the name of the dataflow

description file.
Dataflow filename?

After you enter the name of your file, MAHA reads the node and edge list and
attaches root and outport nodes if missing. Next. MAHA prompts for the module

library.
Module lbrary filename?

After the module library filename is entered, MAHA generates the average module
library as described in the previous section. At this time. you are prompted for a

number of self-explanatory items.

I S G - - - ——

R

-

Echo to cutput £11e? (Y/N):
Print the node 1ist? (Y/N):
Print the edge list? (Y/N):

Print the module litrary (Y/N):

For the first of the above inquiries, MAHA will prompt for a filename if you choose
to echo the output to a file. Echoing is similiar to a secript file as all console output is

also directed to the specified file.

MAHA now calculates the critical path and lists the nodes in it, the total critical
path time, and the minimum clock cycle time. (Critical path is the longest delay path
from root to outport. Ouly a single critical path is returned even if there is more

than one critical path.)

You are now asked for constraints which direct the search for a solution.

Enter maximmm time (O to search):

Enter meximm cost (O to search):

There are three choices vou have regarding the constraints assigned:
1. You can specify time (some positive integer) and set cost to O (to search).

MAHA will search for the cheapest design which meets the time constraint.

2. You can specify cost (some positive integer) and time to O (to search).
MAHA will search for the fastest design which meets the cost constraint.

3. You can specify BOTH cost and speed. MAHA will find the best design
that meets both constraints. Due to the way MAHA functions, it will
produce the fastest design that meets both of the constraints.

Notice that the case where BOTH maximum time and cost are set to zero (search) is

NOT currently allowed. MAHA will print a message and ask for the time and cost

again.

Do you wish to manually control the search? (Y/N):

The first big decision point has arrived. Normally, vou will want the MAHA algorithm
to find the result for you: in this case, answer N to the above question. I[f. for some
reason, you wish to bypass the MAHA search algorithm, answer Y to the question.
Since MAHA acts differently dependent on the answer, manual and automatic

search are discussed separately.

2.3.1 MAHA Automatic Operation

When you specify automatic operation. MAHA will automatically serrch for the best

result. However, MAHA can give a range of results

Do you just want the final result? (Y/N):

If you answer N, MAHA will give a table of results IGNORING the constraints.
However, MAHA will stop when a solution is reached. Answering Y will not give the
intermediate solution table. but executes faster since MAHA restarts allocation (at a
higher partition count) when the cost (time) is exceeded rather than completing a "bad"

allocation. The user can direct MAHA to reduce its execution time further.

Perfarm both ASAP (earliest) and ALAP (latest) allocation? (Y/ND:

MAHA has the capability to perform allocation in "as early as possible" or "as late as
possible" and take the best of the two results. However, this could result in an
execution time which is three times longer than just ASAP (default) allocation. When
vou first enter a graph or have a very large graph. it is recommended that you answer
N. However, for small graphs, you may wish to try both despite the longer execution

time. In this case, answer Y.

MAHA has the option to show all of its internal operation.

Shos freedans and status (detalled infamatia)? (Y/ND:

If you answer Y to the above question, the "grundgy" detail of MAHA operation is
shown: bounding the time range to search, buying and sharing of modules, current cost,

and percent completion. If you wish to avoid this gory detail, enter N at the question.

9

MAHA pauses after allocating the to give the current cost. [t tiien continues with
off- allocation in the forward (ASAP) direction. MAHA also allocates in the reverse

(ALAP) direction if instructed and takes the best of the two results.

2.3.2 MAHA Manual Operation
If manual search has been specified. the user directs all operations.

Enter partition comt (positive #),
ar clock cycle time (as negative #),
a <FETRN> to exit:

Manual control of MAHA allows either directly specifving the number of partitions
(time slots) to cut the dataflow graph or entering the clock cycle time. (To distinguish

a partition count from a clock cycle time. the former is entered as a negative number.)

A distinct feature of manual control of MAHA is that you are allowed to
exceed the original constraints. MAHA will inquire whether to proceed when this

happens.

2.3.2.1 Manual Partitioning
MAHA will partition a dataflow graph between 1 and n partitions, where n is the
number of partitions realized when using the minimum clock cycle time discussed

earlier. If the number of partitions is within this range, MAHA inquires

Perfarm both ASAP (earliest) and ALAP (latest) allocation? (Y/N):

MAHA has the capability to perform allocation in "as early as possible" or "as late as
possible" and take the best of the two results. However, this could result in an
execution time which is three times longer than just ASAP (default) allocation. When
vou first enter a graph or have a very large graph, it is recommended that you answer

N. However. for small graphs, you may wish to try both. In this case, answer Y.

MAHA has the option to show all of its internal operation.

Show freedams and status (detalled infarmaticd? (YN :

10

If you answer Y to the above question, the "grundgy" detail of MAHA operation is
shown: bounding the time range to search. buying and sharing of modules, current cost,

and percent completion. If you wish to avoid this gory detail, enter N at the question.

MAHA pauses after allocating the to give the current cost. It then continues with
off- allocation in the forward (ASAP) direction. MAHA also allocates in the reverse

(ALAP) direction if instructed and takes the best of the two results.

2.3.2.2 Manual Clock-cycle Entry

MAHA will partition a dataflow graph based on a preset clock cycle time. The only
restriction is that the time must equal or exceed the minimum clock cycle time

discussed earlier. If the clock cycle time is within this range, MAHA inquires

Perfarm both ASAP (earliest) and ALAP (latest) allocation? (Y/N):

MAHA has the capability to perform allocation in "as early as possible" or "as late as
possible” and take the best of the two results. However. this could result in an
execution time which is three times longer than just ASAP {default) allocation. When
vou first enter a graph or have a very large graph. it is recommended that you answer

N. However. for small graphs. vou may wish to try both. In this case, answer Y.

MAHA has the option to show all of its internal operation.

Sow freedams and status (detalled infamatia? Y/N):

If vou answer Y to the above question, the "grundgy" detail of MAHA operation is
shown: bounding the time range to search, buying and sharing of modules, current cost.

and percent completion. If vou wish to avoid this gory detail. enter N at the question.

MAHA pauses after allocating the to give the current cost. It then continues with
off- allocation in the forward (ASAP) direction. MAHA also allocates in the reverse
(ALAP) direction if instructed and takes the best of the two results.

- v v T T e e e

11

2.4 MAHA Output

Once MAHA has completed allocation of the graph. it displays the final clock cvele

time. cost, and total time for the graph.

Show the hardware map? (Y/N):

If you wish to see the final allocated results, answer Y to the question. MAHA will

output a table that looks like

HARDWNARE NIE.S 0T

adds add1.000 adds.001
r-shiftio divi.o01

add8 add3.001

The first column contains the list of all hardware purchased. only the function is
actually listed. (Notice there is one r-shift10 and two add8s in the example.) At the
columns to the right of the hardware is the list of all nodes which are bound to that

piece of hardware and the time slot associated with it.

In the example. add1 in the first partition (slot #0) and add3 in the second partition
(slot #1) share the same hardware - add8. Add3 and divl were put into the second

partition (slot #1) and do not share their hardware with any other operators.

2.5 An Example

[n this section. the example that was included in the MAHA paper. "MAHA: A
Datapath Synthesis Program" by Alice Parker. Jorge Pizarro. and Mitchell Mlinar.
ACM/IEEE 23rd Design Automation Conference. June, 1986. The dataflow graph used

in this example is reproduced below.

- D I SN U - _ - - amn

els

Cool

Dataflow Graph Example

13

Each node is assigned a distinct name (not to exceed 15 characters) for use by

MAHA. Below is a copy of the dataflow graph file, example.dfg, which is accessible

from the maha directory.

Since the paper was written, there have been some minor changes to MAHA -
namely, the separation of conditional and parallel branches. The example dataflow

graph in the paper has unconditional branches.

oot dumy O
autpart dumy O
addl add 8
add2 add 9
add3 add 10
add4 add 9
addS add 8
subl sub 9
Sut2 sub 8
sub3 sub 8
divi r-shift 10
div2 r-shift 10
apl ap 8
a2 ap 8
a3 ap 8
andl and 2
invi inv 1
autl buf 1
a2 buf 1
aut3 tuf 1
D6 parbeg O
D6 parbeg O
J5 parerd O
J8 parend O

root addl 8
oot adds 8
Toot addl 8
root xid4 8
root add? 8
root aki4 8
root add3 8
oot adds 8
addl add2 9
a2 add3 10
ada3 divl 10
x4 subl 9
ks subl 9
divi div2 9

div2 D6 8
DS sub3 8
subl amp3 8
D6 sur2 8
sub3 ampt 8
sul2 a2 8
a2 andt 1

ap3 and! 1
andi cut3 1
ampl D6 1
06 invl 1
Dbar2 1
invi cuti 1
atl B 1
a2z B 1
a3 B 1
J 3B 1

¥ augprt 1

Notice how the above example follows the rules outlined previously.

e there is a single root node which starts the dataflow graph

e there is a single outport node which ends the dataflow graph

e the dummy-type nodes have a bitwidth of 0. Since the root and outport
nodes are algorithmic conveniences, a bitwidth of 0 informs MAHA to
ignore and cost and delay for this node.

e there is a blank line between the node list and the edge iist

The associated module library for this dataflow graph. erample.lib, is reproduced

below:

The sample module library points out some of the features and restrictions described

16

dumy dumy O 0 O
parveg parbeg 0 0 0

parend parend 0 0 O
add2 add 2 40 80

add4 add 4 72 120
addB add 8 120 180
add12 add 12 150 20
addi6 add 16 200 300
aidn add 0 20 45
Sut2 sub 2 850 S0
sub4 sub 4 84 130
sub8 sub 8 140 200
sSub12 sub 12 225 250
subl6 sub 16 240 30
sutn sub 0 25 80
miZ mul 2 80 140
mul4 ml 4 150 300
mul8 mul 8 280 640
mx2 mxx 2 X &5
mx4 mx 4 54 100

ampd amp 4 70 110

a8 arp 8 130 180
ampl2 ap 12 180 240
latchl latch 1 0 68
latchd latch 4 120 260
latch8 latch 8 240 500
latchn latch 0 30 65
a2 and 2 10 18
and3and 314 2

r-shifth r-shift 0 44 88
r—shift4 r-shift 4 44 250
r—shift8 r—shift 8 44 400
r—-shiftl2 r-shift 12 4 510
r-shiftl6 r-shift 16 4 600
1-shiftn 1-shift 0 4 88
1-shift8 1-shift 8 44 400
1-shift16 1-shift 16 44 600
invi inv 1 8 14
IM21invi1i83%
bufi tuf 1 10 14

buf2 buf 1 30 100

buf3 uf 1 50 180

earlier:

.“-—‘N.M,J . - -

... AN st e

e Each module has a unique name.

e The set of module operations is well defined: addition. subtract, multiply.
cmp (compare), and. buffer driver, inverter, [-shift (left shift register),
r-shift (right shift register/divider), distribute, and join.

e Even fictitious node operations such as parbeg, dummy. and parend MUST
be declared in the module library. (Other fictitious nodes include dist and

Join. but are not used in this example.)

e All of the delay and cost values are positive integers (including zero).

Here is a sample run of MAHA using the example.

R S ¥ DN . N .

-4

I8

sun (1] maha.out

MAHA v5.01
UXC Design Autamation Group

Mitchell Mlinar, October 1986

Dataflow graph filename? dataflow

Reading in the ncdelist.
There are 24 nodes: roots = 1, ougparts = 1.

Reading in edgelist.
There are 32 edges.

Cheddng for extra edges required.
—> 0 extra edges added.

Module Nbrary filename? modlib

There are 13 modules, minimum possible time is 230.

Inpat process time: 0.1680 seonds.
Echo to output file? (Y/N): n
Print the ncde 1ist? (Y/N): n
Print the edge list? (Y/N): n

Print the module Library? OY/N): y

dhmenat i

v

19

Mcdule name Width Delay Cost

GummyO 0 0 0
adds 8 157 X5
addo 9 176 X8
add10 10 13 33
sub9 9 0 &3
su8 8 01 02
r-shiftio 10 176 663
aps 8 160 210
and2 2 12 y.9)
invi 1 8 19
bufl 1 0 g8
parbeg0 0 0 0
parend0 0 0 0

Press REIURN to ocontinue —

Notice how MAHA calculates the average of the module library. Each node in the

dataflow will have a single module associated with it (but not alloacted vet).
Finding the critdcal path.

The critical path has 13 xdes with a time of 1271.
The minimm clock time is 230.

Critical path process time: 0.020 secards.

The critical path is:

oot addl a2 add3
divi dive D6 sut2
a2 andl a3 JB
autpart

Enter maximm time (© to search):

Now that the critical path has been found, we can try to perform the synthesis with a

cost constraint.

20

Enter modmm time (O to search): O

Enter mexdmm cost (O to search) : 3000

Oxmstraints:
Time: minimize Cost: 3000

Do yau wish to mamually aontrol the search? (Y/\): n

Artcmatic search ...

Perfarm both ASAP (earliest) and ALAP (latest) allocation® (Y/N): y

Show freedars and status (detalled infamatian)? YN): n

1 127 n 4686
2 692 B4 349
3 516 1548 4475
4 377 158 3.8
5 32 1780 4475
6 3 1938 a2
7 0 60 B4

Best 1s tme of 1508, clock of 377, cost of 3106
Analysis time: C.280 seaxxis.

Recalailate the best case showing the hardware map® (YN, vy

e - TR ———tgr =

21
HARDWARE NIE.QOT
add8 add1.000
a9 add?2.000
add10 add3. 001
r-shifti0 divi.001 div2.002
sups sub2.002
aps amps. 002 anp2. 003
and2 ardl.003
ufi out3.03
subg subl.001
add9 add4.000
adds add5. 000
Bye.
sun (2]

~ince the cost constraint was never met, the solution with the lowest cost was selected.
Obviously, the graph is too tichtly constrained. so a higher cost will be attempted. (Of

course, in this simple example, the solution is obvions. [0 a large example, the solution

may not be easily seen.|

o
(8]

Fnter maximm time (O to search): O

Enter maximm aost (O to search): 4000

Cnistraints:
Time: minimize QCost: 4000

Lo you wish to mamally control the search? (Y/N): n

Autamtic search ...

Perfarm both ASAP (earliest) and ALAP (latest) allocatdon? (Y/N): n

Show freedams and status (detailed infamation)? (Y/N): n

516 1548 4475
3106
32 1760 4475

N W N e

20 1610 34

Best 1s time of 1384, clock of 692, oost of 3449
Analysis time: 0.080 secards.

Recalculate the best case showing the hardware map? (Y/N): y

SV G

23
HARDWARE NIE.S0T
a8 add1.000 add5.001
addo add2.000 add4.001
add10 add3.000
r~shiftl0 divi.o00 div2.001
sub8 sut2.001
a8 2. 001
and2 and1.001
buf1 aut3.001
su8 sub3.001
aps ampl.00
invi invi.001
buf1 autl.001
buf1 aut2.001
sub9 sub1.001
a8 amp3.001
Bye.
sun (2]

Although the LOWEST cost is for 4 partitions, the object was to minimize time while
meeting the cost constraint. Note that nodes with no cost associated with them are not

listed in the hard ware map.

b 4

24

3. Converting to PNF from a VT description

Converting a complete VT (Value-Trace) description for a datapath into PNF (Park

Normal Form) needed by MAHA is a four step process requiring the following

programs:
vt-pre.out The VT pre-processor
vtran,l The VT translator
makpnf.l The PNF extracter
cnvrtm.l The LISP-to-C data translator

3.1 VT Pre-processor: vt-pre.out

The VT pre-processor merely reads in the original V'T dsecription and writes out an
easily LISP readable VT description. Vt-pre.out removes all of the unnecessary
declarations and inserts field delimiters if they do not currently exist (as astericks). To

execute the pre-processor, enter:

vi~fre.aut input-VI-description processed-VI-desaripticon

where input-VT-description and processed-VT-description are the input and output
filenames. respectivelv. For example, assume that vou wish to synthesize a datapath for

vt181.tbm. You would type:

vtpre.agt vtlsl.im vuisl.mre

The pre-processed VT description would be written to rt181.pre.

3.2 VT Translator: vtran.l

The VT translator consists of 2 single LISP module called vtran.l. This can be

loaded by typing:
1isp viran

Once the load is complete, the transiator can be executed by typing:

@

Upon execution, the VT translator prints a sign-on message and asks for the name of

L.._.“L_‘_._.__.-‘— B e — o~ e

25

the input file. This would normally be the output from the VT pre-processor.

vt-pre.out:

Input file? vt18l.pre

Next, the VT translator inquires for any starting list. For extremely complex \'T
descriptions, it is wise to break the VT up into several smaller files. Since the
translation process is not quick. you could incrementally translate the pieces and quit
after each one saving the intermediate results. (You can always do a large VT as a
single module. However, since humans have explicit needs such as food, water, and
sleep and generally like to be aware of a problem in a program today rather than

sometime next week, you are forewarned.) For this example, there is no starting list:

Ay starting 1ist? n

At this point, the VTs are processed one at a time showing the translation as it
proceeds. The sequential translation has exception handling for four special cases:
CALL. ENTER, RESTART. and LEAVE. When a CALL occurs, the current translated
VT list is examined for the presence of the named VT operator. If the VT body has
been translated. the V'T body is substituted for the call (flattening of the hierarchy) and
the translation continues. However, if the V'T body has not been encountered, the
translation of the current VT is aborted and the program proceeds to the next VT in
the input file. Although this method means that a multi-pass approach may be
necessary to generate a complete translation. there is much less overhead involved

(which is often critical in LISP).

The ENTER instruction is treated identical to a ("ALL instruction in this version of

vtran.l.

The LEAVE instruction is only accepted at the end of a \'T in this version of vtran.l.
Hence. any internal LEAVEs. regardless of whether they leave the current VT or
another VT. must be removed. If a VT has outputs any values required by other V'Ts,

a LEAVE with the appropriate values must be the last VT-body statement.

26

Once the first pass through the VT is complete, the program checks if all VT bodies
have been translated. If not, another pass is made through the file; however, all VT
bodies which have been previously translated are skipped. The translator will continue
to make passes through the file until no more VTs can be resolved or the translation is

complete. If the translation is complete, completion status is displayed.

translation process aaplete: xxxX VI bodles translated

If the translation process could not complete, a message like:

translation process suspended: X VT bodies translated
yyy unresalved VT badies

After printing the pertinent message, the translator asks if yvou would like to process
any other files. Note that the results of the new file are incrementally added to the
current description: if you want to translate a completely unrelated VT, you must stop

the program and start over.

Any mye files? n

Since the translation is being stopped (it does not matter whether the translation is

vomplete), the program inquires:

Qutput filename? vtl8l.trn

The translator will write the translated portions of the V'T description out to the named

file and exit.

If the translation is complete, vou can proceed to generate the PNE data lists (via
makpnf.l discussed next). Otherwise, vtran.l will have to be executed using 11181.trn
as the starting list and one or more files containing the remainder of the VTs as the

input file(s).

3.3 Extracting the PNF datafiles: makpnf.]

Once the VT translator has successfully terminated, the desired VT can be extracted

from the translation file. To load the extracter, type:

11sp waignt

Once the load is complete, you can execute the program by typing:

@

After printing the signon message, the extracter will inquire for the file which was

generated by the translator:

File generated by VIRAN? vt181.trn

After reading the translated VT descriptions. the VT body to be extracted is entered:

VT bady to convert to RWF? ?

Since remembering (or even knowing) the names of all VT bodies is, at best, ridiculous.

entering a question mark instructs the extracter to list the names of VTs in this file.

1ist of VT bxdies avallable:
vigl vis4 viss vii3

You have chosen to synthesize what your filename indicates is the "big cheese", so you

enter:

VT bady to convert to RF? v181

After selecting the VT body to extract, enter the nodelist and edgelist filenames you

wish to generate:

Nodelist file to create? vtl81.nod
Edgelist file to create? vt181.edg
The files output by makpnf.l, vt181.nod and vt181.edg, are written in LISP format as

early versions of MAHA were composed in LISP. These files need to be converted to

the C text format before executing the C version of MAHA.

oo et o e cttatom. y o . PN -~ -

28

3.4 LISP-to-C MAHA converter: cnvrtm.l

Cnvrtm.l is a LISP program which converts from the early nodelist and edgelist
descriptions in LISP format to a single dataflow graph in C. The reverse conversion

from C to LISP data files is not supported. To load the conversion program, type

lisp cnvrtm

Once loading has completed. the program is executed with

@

Upon execution. cnvrtm.l prints a signon message and inquires for the names of the

LISP format nodelist and edgelist files (generated by makpnf.l).

LISP farmat nodelist filename? vt181.nod

LISP famat edgelist filename? vt181.edg

Once the lists are read. envrtm.l inquires for the output filename.

Dataflow cutput fllename? vt181.dfg

The dataflow graph vt181.dfg is written and envrtm.l exits. After construction of a
compatible module library (say. vt181.lib), you have the two input data files necessary

for executing MAHA.

o et o o pes O N

4. File Formats

Included here is a brief summary of all file formats, some of which are used by the C

version of MAHA and others which are used by LISP utilities.

4.1 Dataflow description file: C

The dataflou description file has both node and edge information in a one node

(edge) per line format as follows:

node—description-1
node~description-2

..................

..................

Note the blank line between the node and edge descriptions; this is a
REQUIREMENT.

4.1.1 Node Description

A node description contains the node name, node type, and bitwidth as follows:
node-name node-type bitwidth

Node-name is any 15 character name which is unique to the dataflow graph. The
node-type is also a name of up to 15 characters which specifies the function of the node:
this node-type MUST match one or more module functions. Bitwidth is a positive
integer from O to whatever: a bitwidth of O informs MAHA that this node is an

implied node (e.g. one that has no associated cost or delay). For example,
addl add 8

names an adder add! which performs an add function and is of bitwidth 8 There must

be at least one add in the module library. Keep in mind that case is important: hence.

add and Add are NOT the same.

N PN it i, e PPN o — P~ .

30

A brief example of of some valid node names are shown below.

c3 dumy 1
x1 pl tdt-read 1

hello d-flop 140
me add 6
me too sub 5

you-are-fired dumy O
ADAM rules ar 2
Allce amp 2

4.1.2 Edge Description
An edge description follows the node description in a dataflow file witiu an intervening

blank line. [t consists of a source node. destination node. and bitwidth.

sarceNcde destinationtode bitwidth

Like the node description, source-node and destination-node are names up to 15
characters in length. The node names MUST match names previously inciuded in the

node description.

An example of edge descriptions using previously listed node names are shown below.

hello me 8

hello Alice 16

Allce youare-fired 16
ADAM Tules me too 16

4.2 Dataflow description file: LISP
The LISP dataflow graph is similiar to the C version with some additions necessary
for LiSP and interchangability with SEHWA and CSSP. The dataflow graph file

consists of a LISP node list followed by a LISP edge list.

e

Each type will be described next.

4.2.1 Node list description

The node description is a LISP list of the form:

(ncde-description-1 node—description2 ... node—description-n)

where node-description-i is a list of the form:

(hcde—name node—-function bit-width)

where node-name is any node-list unique character strinz from 1 to 31 characters an.
the first character is a letter {a-z). node-function is the tunction of the node 1eharacter
string from 1 to 31 characters) and shonld be consistent for all nodes. Some comm: n
functions are: add. sub. div. mul. d-flop. and dummy. The only resteiction o the
function name is that it MUST match at least one funetion in the module {brary.
Bit-width is an integer from 0 to whatever and defines the minimum bit width peeded

for this function.

The only characters which may comprise a character string in the datatlow deseripii n
are the letters (A-Z, a-z. 0-9. - and _J. Keep in mind that cise s fmportant: henoe,

add and Add are NOT the =same. Also, dong and faney names sueh

lets-go _get _a _sir-pack may be cute, but they do take up precious memory in [ISP.

A brief example of a node list is shown below.

((c3 dumy 1)

(xi p! tdt-read 1)
(ello d-flop 140)

(me add 6)

(re_too swb 5)
(your-are-fired cummy O)
(AWM rules ar 2

(so_does Alice amp 2))

4.2.2 Edge list description

An edge deseription is a LINP list of the form:

where ~dge-deseription-{ is a list of the form:

(edgename source—node destinationnode bit-width edge-name)

where #de-0me is any edge-list unique character string from 1 to 31 characters and

“he first character s a letter (a-2). Source-node and drstination-node are the source

wid destination nodes of the directed are. Both node names MUST match names used

b thie node st deseription. Not only is it unwise, unfair, and immoral to use a name

qot in the nodelist. the utilities using the file will not work if there is no match.

Bit-urdth is an integer from 1 to whatever and defines the minimum bit width needed

for this are.

(Fdge-name is repeated at the end for compatibility with some other portions of the

ADAM system.)

A hrief example f an edge list is shown below.

((e1 v24 11 xd p1 1 el)

(23xplled

(ezxi pl 2plle

(zzzzzz VA 12 X3 Pl 6 Zzz222)
(wake~up bozp time 2 wake-up)

(snart yawn uh what did you wake me 4 Snort yawn)
(arghhhhhh x51 p1 pf 1 arghhhhl))

—_— T T T e T -—f—v

33

4.3 Module description file: C

The module library data file consists of a list of individual functional niecdiles an g

some of their physical parameters. The form of the module library is:

module-description-1
mxule-description—2

....................

Fach module-desceription is of the form:

mxdule—name module-function bit-width prop-delay cost

Viodule-name is a name of up to 15 characters which is unique to the module library.
\fodule-function is also a name of up to 15 characters and describes the general
Tinetion of the module. Some typical general functions are add, sub, or, and. and
:-flop. The node-type of every node description MUST match the module- function of
o or more modules. Bit-width, prop-delay, and cost are integer values which
o~ riie the bit width of the module, propagation delay in some arbitrary units, and

~~adly area, although could be power, ete.) in some arbitrary units.

<. revd into MAHA., the module library is reduced to a list which is linked to the

t ¢+ Module description file: LISP

;~1" iary ~rructure for the module library is nearly identical to the C version

+ v oeption of the addition of parentheses.

axuLedesTiption-1 module-description-2 ... module-description—n)

foacmption-n s of the form:

.. e ~ame Txule-function bit-width prop-delay cost)

- » trary Jdeseription for a desceription of each of the subparts.

—~

IV PLEST: An Area Fstimator for Polseell € hips

R R R R R R N N I I A R

PLES]T AL e o e ,
ALt P [N
INEUIS L ral e Do e
Toander 0t MR o
AVET A e WL D e een IR

MAX AL} L e (Y o

TR T S R T e e :
» oW
A PN I
G Ve e
, WAt
Yb o et e
b areen
I ST TR B M S R R :
(NS GEERTE AP [o
oTRES the prosirar R
toor v e ot er Ce .o i
oo harigeet U S S B
Chee Wl it MY L) : A
! * et N
. e e e .
M A . ' ' . .
e e PR .

I.orun PLEST
v-'-¥,‘. R .
bi

P I I A R R I O O T T R T S S I R

" END

DATE

FILMED

